
Final Exam — Analysis (WBMA012-05)

Wednesday 2 February 2022, 16.00h–18.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42”
is not sufficient. You may use all theorems and statements in the book, but you
should clearly indicate which of them you are using.

3. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

Problem 1 (10 + 6 + 4 + 4 = 24 points)

Let (xn) be a bounded sequence and consider the sequences (an) and (bn) defined by

an = inf{xk : k ≥ n} and bn = sup{xk : k ≥ n}.

(a) Use the Monotone Convergence Theorem to prove that the sequences (an) and (bn)
are convergent.

Hint: recall that A ⊆ B implies that supA ≤ supB and inf B ≤ inf A.

(b) Let a = lim an and b = lim bn. Show that for all ε > 0 there exists N ∈ N such that

n ≥ N ⇒ a− ε < an ≤ xn ≤ bn < b+ ε.

(c) Assume that a = b. Show that the sequence (xn) is convergent.

(d) Is the sequence (xn) still convergent when a < b? If so, give a proof; otherwise, give
a counterexample.

Problem 2 (7 + 7 + 7 = 21 points)

Consider the following set:

A =

{
1

p
+

1

q
: p, q ∈ N

}
.

Show that A is not compact in three different ways:

(a) A does not satisfy the definition of a compact set;

(b) A is not closed;

(c) A has an open cover without a finite subcover.
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Problem 3 (5 + 6 + 5 + 6 = 22 points)

Let f : [−1, 2]→ R be a differentiable function. Assume that

f(−1) = 4, f(0) = −1, and f ′(x) ≥ 3 for all x ∈ [0, 2].

Prove the following statements:

(a) f(2) ≥ 5.

(b) f has at least two zeros on the interval (−1, 2).

(c) f ′(s) = 0 for some s ∈ (−1, 2).

(d) f ′(t) =
√

7 for some t ∈ (−1, 2).

Problem 4 (5 + 9 + 9 = 23 points)

Let g : [0, 1]→ R be a continuous function and consider the sequence (fn) given by

fn : [0, 1]→ R, fn(x) = g(xn).

Prove the following statements:

(a) The sequence (fn) converges pointwise to f : [0, 1]→ R where

f(x) =

{
g(0) if 0 ≤ x < 1,

g(1) if x = 1.

(b) If the convergence fn → f is uniform on [0, 1], then g(0) = g(1).

(c) The converse of part (b) is not true.

Hint: consider the function g(x) = sin(πx).

End of test (90 points)
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Solution of Problem 1 (10 + 6 + 4 + 4 = 24 points)

(a) Consider the set Sn = {xk : k ≥ n}. Clearly, we have that Sn+1 ⊆ Sn, which implies
that

inf Sn ≤ inf Sn+1 and supSn+1 ≤ supSn,

or, equivalently,
an ≤ an+1 and bn+1 ≤ bn.

This shows that both (an) and (bn) are monotone sequences.
(2 points)

It is given that the sequence is bounded, which means that there exists a constant
M > 0 such that |xn| ≤M for all n ∈ N. In other words, we have that −M ≤ xn ≤M
for all n ∈ N.

Let n ∈ N be arbitrary. We have that an ≤ xn ≤ M . We also have that −M ≤ xk
for all k ≥ n (indeed, we have the latter inequality for all n ∈ N), but since an is the
greatest lower bound of the set Sn = {xk : k ≥ n} it follows that −M ≤ an. This
shows that |an| ≤M , which means that the sequence (an) is bounded.
(3 points)

We have that −M ≤ xn ≤ bn. We also have that xk ≤ M for all k ≥ n (indeed, we
have the latter inequality for all n ∈ N), but since bn is the least upper bound of the
set Sn = {xk : k ≥ n} it follows that bn ≤ M . This shows that |bn| ≤ M , which
means that the sequence (bn) is bounded.
(3 points)

Since the sequences (an) and (bn) are bounded and monotone it follows by the Mono-
tone Convergence Theorem that they are convergent.
(2 points)

(b) Let a = lim an and b = lim bn. Let ε > 0 be arbitrary. There exists N1 ∈ N such that

n ≥ N1 ⇒ |an − a| < ε ⇒ −ε < an − a < ε ⇒ a− ε < an.

(2 points)

Likewise, there exists N2 ∈ N such that

n ≥ N2 ⇒ |bn − b| < ε ⇒ −ε < bn − b < ε ⇒ bn < b+ ε.

(2 points)

By definition of the sequences (an) and (bn) we have that an ≤ xn ≤ bn for all n ∈ N.
For N = max{N1, N2} combining all inequalities gives

n ≥ N ⇒ a− ε < an ≤ xn ≤ bn < b+ ε.

(2 points)

(c) Assume that a = b. Let ε > 0 be arbitrary. Part (b) implies that there exists N ∈ N
such that

n ≥ N ⇒ a− ε < xn < a+ ε ⇒ |xn − a| < ε.

By definition, this means that the sequence (xn) is convergent and lim xn = a. (Of
course, we could also say that lim xn = b since it was assumed that a = b.)
(4 points)
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(d) If a < b, then the sequence (xn) is not necessarily convergent. As a counterexample,
take xn = (−1)n. Then an = −1 and bn = 1 for all n ∈ N, which immediately implies
that a = −1 and b = 1 so that a < b. The sequence (xn) is not convergent since we
can make two convergent subsequences that have different limits (just consider terms
with even or odd indices n).
(4 points)
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Solution of Problem 2 (7 + 7 + 7 = 21 points)

(a) By taking p = q = n we obtain the sequence (an) in the set A which is given by
an = 2/n. Since (an) converges to zero, every subsequence also converges to zero.
(4 points)

However, 0 /∈ A. Therefore, we have showed the existence of a sequence which does
not have a convergent subsequence such that the limit of that subsequence is contained
in the set A. It follows from Definition 3.3.1 that A is not compact.
(3 points)

(b) Note that 0 is a limit point of A. Indeed, with an = 2/n we have a sequence in A
such that an 6= 0 for all n ∈ N and lim an = 0. By Theorem 3.2.5 it follows that 0 is
a limit point of A.
(5 points for showing that 0 is a limit point of A)

However, 0 /∈ A, so by Definition 3.2.7 it follows that A is not closed. Finally, Theorem
3.3.8 implies that A is not compact.
(2 points for the conclusion)

(c) First note that every element of A lies in the interval (0, 2]. The sets

On =

(
2

n
, 3

)
with n ∈ N

are obviously open. In addition ⋃
n∈N

On = (0, 3) ⊃ A,

which implies that the sets On form an open cover for A.
(3 points)

On the other hand, for indices n1, n2, . . . , nk ∈ N we have

On1 ∪On2 ∪ · · · ∪Onk
=

(
2

m
, 3

)
,

where m = max{n1, . . . , nk}. The right hand side does not contain the set A. Indeed,
we already know that 0 is a limit point of A so the set A has elements arbitrarily
close to 0. This means that the open cover given by the sets On does not have a finite
subcover.
(4 points)
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Solution of Problem 3 (5 + 6 + 5 + 6 = 22 points)

(a) Since the function f is differentiable on (0, 2) and continuous on [0, 2], the Mean Value
Theorem implies that there exists a point c ∈ (0, 2) such that

f(2)− f(0)

2− 0
= f ′(c),

(3 points)

Rearranging terms and using the assumption that f ′(c) ≥ 3 gives

f(2) = f(0) + 2f ′(c) = −1 + 2f ′(c) ≥ −1 + 2 · 3 = 5.

(2 points)

(b) Since f(−1) > 0 and f(0) < 0, the Intermediate Value Theorem implies that there
exists a point z1 ∈ (−1, 0) such that f(z1) = 0.
(3 points)

Since f(0) < 0 and f(2) > 0, the Intermediate Value Theorem implies that there
exists a point z2 ∈ (0, 2) such that f(z2) = 0.
(3 points)

This shows that f indeed has at least two zeros on the interval (−1, 2).

(c) We can show this statement in two different ways.

Method 1. Since part (b) implies the existence of two points z1, z2 ∈ (−1, 2) with
z1 < z2 and f(z1) = f(z2), it follows by Rolle’s Theorem that there exists a point
s ∈ (z1, z2) such that f ′(s) = 0. (The Mean Value Theorem can also be used here.)
(5 points)

Method 2. Since f is continuous on the compact set [−1, 2] it follows that f attains a
minimum value at a point s ∈ [−1, 2]. Since f(−1) > 0 and f(2) > 0 but f(0) < 0 it
follows that the minimum cannot be attained at the boundary points of the interval
[−1, 2]. Hence, s ∈ (−1, 2). By the Interior Extremum Theorem it then follows that
f ′(s) = 0.
(5 points)

(d) By the previous argument, we have a point s ∈ (−1, 2) such that f ′(s) = 0. By
assumption we have that f ′(2) = 3. Since 0 <

√
7 < 3, it follows by Darboux’s

Theorem that there exists a point t ∈ (s, 2) ⊂ (−1, 2) such that f ′(t) =
√

7.
(6 points)

Note: we cannot apply the Intermediate Value Theorem to f ′ since it is only given
that f is differentiable, but not that f ′ is a continuous function!
(only 3 points when IVT has been applied)
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Solution of Problem 4 (5 + 9 + 9 = 23 points)

(a) We have that fn(1) = g(1) for all n ∈ N so that trivially lim fn(1) = g(1).
(1 point)

For 0 ≤ x < 1 we have that limxn = 0. By continuity of g it follows that

lim fn(x) = lim g(xn) = g(0).

(4 points)

(b) The function hn(x) = xn is continuous as a product of continuous functions. The
function g is continuous on [0, 1] by assumption. Since compositions of continuous
functions are again continuous, it follows that each function fn = g ◦hn is continuous
on [0, 1].
(3 points)

If the convergence fn → f is uniform on [0, 1], then the limit function f is also
continuous on [0, 1].
(2 points)

To show that g(0) = g(1) we can use different arguments.

Method 1. The sequential characterization of continuity implies that that for any
convergent sequence (cn) with lim cn = 1 we have that lim f(cn) = f(1) = g(1). In
particular, this must hold for the sequence cn = 1 − 1/n for which we have that
f(cn) = g(0) for all n ∈ N and thus lim f(cn) = g(0). By uniqueness of limits, it
follows that g(0) = g(1).
(4 points)

Method 2. In particular, the function f is continuous at x = 1. By definition, this
means that for any ε > 0 there exists δ > 0 such that

|x− 1| < δ ⇒ |f(x)− f(1)| < ε.

Now let 0 < δ < 1 and take any x ∈ (1−δ, 1). For example, we could take x = 1−δ/2.
The implication above then gives

|g(0)− g(1)| < ε,

where we have used the formula for f obtained in part (a). Since this inequality holds
for all ε > 0, it follows that g(0) = g(1).
(4 points)

Method 3. Assume that g(0) 6= g(1). Then ε = 1
2
|g(0) − g(1)| > 0. Since f is

continuous at x = 1, there exists δ > 0 such that

|x− 1| < δ ⇒ |f(x)− f(1)| < ε.

Now let 0 < δ < 1 and take any x ∈ (1−δ, 1). For example, we could take x = 1−δ/2.
The implication above then gives

|g(0)− g(1)| < ε = 1
2
|g(0)− g(1)|,

where we have used the formula for f obtained in part (a). This is obviously a
contradiction. Hence, we must conclude that g(0) = g(1).
(4 points)
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(c) For g(x) = sin(πx) we clearly have that g(0) = g(1) = 0 so that in particular f = 0.
However, the convergence fn → f is not uniform on [0, 1] as is shown next.

By elementary calculus methods, it follows that the functions fn attain their maximum
value at xn = n

√
1/2. Therefore, we have for all n ∈ N that

sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1]

fn(x) = fn(xn) = sin(π/2) = 1

(5 points)

In particular, we do not have that

lim

(
sup

x∈[0,1]
|fn(x)− f(x)|

)
= 0.

This shows that the convergence fn → f is not uniform on [0, 1].
(4 points)
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